Please create an account to participate in the Slashdot moderation system

 



Forgot your password?
typodupeerror
×

Comment Re:Yes, Haber's life is an example of that irony (Score 1) 224

Interesting read, thanks! So true, you comments reflect the adage "taxes are the price we pay for civilization..." And also, capitalism tends toward privatizing gains and socializing costs...

If you see my other posts above though, I am not concerned about the technology to feed the world even without the Haber process (and perhaps better without it). As at this link, we have the technology through organic farming:
"Can Organic Farming Feed Us All?"
http://www.worldwatch.org/node...

Whether we have the political will is a different issue, with so many vested interests in the current synthetic-chemical-based agricultural system.

Another aspect of this craziness:
http://www.seriouseats.com/200...
"The Physicians Committee for Responsible Medicine has posted an easy-to-understand visual on its site that shows which foods U.S. tax dollars go to support under the nation's farm bill. It's titled "Why Does a Salad Cost More Than a Big Mac?" and depicts two pyramids -- subsidized foods and the old recommended food pyramid. It's interesting to note that the two are almost inversely proportional to each other."

Comment Feeding the world without the Haber process (Score 1) 224

Human waste includes urine, which is part of "night soil".
http://en.wikipedia.org/wiki/N...

But yes, "night soil" could only be part of a system. But there are other parts, as mentioned in a section quoted at the end.

I don't know about England specifically, or later years, but this says:
"Population and Economy : From Hunger to Modern Economic Growth"
https://books.google.com/books...
"According to official Chinese statistics, by the middle of the 18 century, population density was already over 500 people per cultivated sq. km (see Liang 1980: 400, 546). While these numbers are undoubtedly exaggerated owning to under-registration of cultivated acreage (ho 1995), the contrast with 18th-cent. Europe, where 1 sq. km of cultivated acreage supported 70 people, is quite extreme (see Braudel 1981a: 56-64)."

Much of China is just not that cultivated because of mountains and deserts and such (especially in the West).

Organic agriculture is indeed information and labor intensive -- which is why robotics will revolutionize it -- including robots to pick specific insects off of plants.

On fertilizer loss, see:
http://www.wri.org/our-work/pr...
"Between 1960 and 1990, global use of synthetic nitrogen fertilizer increased more than sevenfold, while phosphorus use more than tripled. Studies have shown that fertilizers are often applied in excess of crop needs (MA 2005). The excess nutrients are lost through volatilization (when nitrogen vaporizes in the atmosphere in the form of ammonia), surface runoff (Figure 2), and leaching to groundwater. On average, about 20 percent of nitrogen fertilizer is lost through surface runoff or leaching into groundwater (MA 2005). Synthetic nitrogen fertilizer and nitrogen in manure that is spread on fields is also subject to volatilization. Under some conditions, up to 60 percent of the nitrogen applied to crops can be lost to the atmosphere by volatilization (University of Delaware Cooperative Extension 2009); more commonly, volatilization losses are 40 percent or less (MA 2005). A portion of the volatilized ammonia is redeposited in waterways through atmospheric deposition. Phosphorus, which binds to the soil, is generally lost through soil erosion from agricultural lands."

Comparisons to medicine... Don't get me started. :-) Doctors typically have only a few hours of education about nutrition over the course of several years of study, yet poor nutrition is the root of most Western disease. So, the whole medical community is (profitably for itself) misdirecting its efforts as far as priorities. Sure there is much alternative medicine that is bogus, but the parts based on nutritional research (e.g. Dr. Fuhrman's work) is quite good overall. Yet it is not mainstream. What is mainstream is stuff like "stents", which studies actually show are mostly worthless. For example:
http://www.drfuhrman.com/libra...
"The sad thing is surgical interventions and medications are the foundation of modern cardiology and both are relatively ineffective compared to nutritional excellence. My patients routinely reverse their heart disease, and no longer have vulnerable plaque or high blood pressure, so they do not need medical care, hospitals or cardiologists anymore. The problem is that in the real world cardiac patients are not even informed that heart disease is predictably reversed with nutritional excellence. They are not given the opportunity to choose and just corralled into these surgical interventions. Trying to figure out how to pay for ineffective and expensive medicine by politicians will never be a real solution. People need to know they do not have to have heart disease to begin with, and if they get it, aggressive nutrition is the most life-saving intervention. And it is free."

Same for many other aspects of profit-driven science... I collected some examples here, with one example quote:
http://www.pdfernhout.net/to-j...
"The problems I've discussed are not limited to psychiatry, although they reach their most florid form there. Similar conflicts of interest and biases exist in virtually every field of medicine, particularly those that rely heavily on drugs or devices. It is simply no longer possible to believe much of the clinical research that is published, or to rely on the judgment of trusted physicians or authoritative medical guidelines. I take no pleasure in this conclusion, which I reached slowly and reluctantly over my two decades as an editor of The New England Journal of Medicine." (Marcia Angell)"

Why should mainstream agriculture be any different? Monsanto and the like all have huge profits on the line convincing farmers they need the agricultural equivalent of "stents" and so on... That includes heavy influences in political subsidies and control of research at land grant agricultural schools. And agricultural commodity prices are overall so low in the USA that most farmers need to take off-farm day jobs to pay the bills, and selling the farm land at an appreciated value is pretty much just a retirement plan, with farming a way to keep taxes low on the land. It's a crazy business in that sense. And meanwhile the USA has sold off all of its national grain reserves due to free market fundamentalism and a privatization emphasis and such among our legislators... Its just plain madness. Meanwhile the USA spends (or incurrs) about a trillion US dollars a year on "defense", but it does not have any security of the most basics like good food!

BTW, the rest of this quotes from a document on whether organic farming can feed the world (and bear in mind the suggestion that many organic crops are superior in nutritional quality because of the micro-nutrient issue):
http://www.worldwatch.org/node...
====
The only people who think organic farming can feed the world are delusional hippies, hysterical moms, and self-righteous organic farmers. Right? Actually, no. A fair number of agribusiness executives, agricultural and ecological scientists, and international agriculture experts believe that a large-scale shift to organic farming would not only increase the world's food supply, but might be the only way to eradicate hunger.

There are actually myriad studies from around the world showing that organic farms can produce about as much, and in some settings much more, than conventional farms. Where there is a yield gap, it tends to be widest in wealthy nations, where farmers use copious amounts of synthetic fertilizers and pesticides in a perennial attempt to maximize yields. It is true that farmers converting to organic production often encounter lower yields in the first few years, as the soil and surrounding biodiversity recover from years of assault with chemicals. And it may take several seasons for farmers to refine the new approach.

But the long-standing argument that organic farming would yield just one-third or one-half of conventional farming was based on biased assumptions and lack of data. For example, the often-cited statistic that switching to organic farming in the United States would only yield one-quarter of the food currently produced there is based on a U.S. Department of Agriculture study showing that all the manure in the United States could only meet one-quarter of the nation's fertilizer needs-even though organic farmers depend on much more than just manure.

More up-to-date research refutes these arguments. For example, a recent study by scientists at the Research Institute for Organic Agriculture in Switzerland showed that organic farms were only 20 percent less productive than conventional plots over a 21-year period. Looking at more than 200 studies in North America and Europe, Per Pinstrup Andersen (a Cornell professor and winner of the World Food Prize) and colleagues recently concluded that organic yields were about 80 percent of conventional yields. And many studies show an even narrower gap. Reviewing 154 growing seasons' worth of data on various crops grown on rain-fed and irrigated land in the United States, University of California-Davis agricultural scientist Bill Liebhardt found that organic corn yields were 94 percent of conventional yields, organic wheat yields were 97 percent, and organic soybean yields were 94 percent. Organic tomatoes showed no yield difference.

More importantly, in the world's poorer nations where most of the world's hungry live, the yield gaps completely disappear. University of Essex researchers Jules Pretty and Rachel Hine looked at over 200 agricultural projects in the developing world that converted to organic and ecological approaches, and found that for all the projects-involving 9 million farms on nearly 30 million hectares-yields increased an average of 93 percent. A seven-year study from Maikaal District in central India involving 1,000 farmers cultivating 3,200 hectares found that average yields for cotton, wheat, chili, and soy were as much as 20 percent higher on the organic farms than on nearby conventionally managed ones. Farmers and agricultural scientists attributed the higher yields in this dry region to the emphasis on cover crops, compost, manure, and other practices that increased organic matter (which helps retain water) in the soils. A study from Kenya found that while organic farmers in "high-potential areas" (those with above-average rainfall and high soil quality) had lower maize yields than nonorganic farmers, organic farmers in areas with poorer resource endowments consistently outyielded conventional growers. (In both regions, organic farmers had higher net profits, return on capital, and return on labor.)

Contrary to critics who jibe that it's going back to farming like our grandfathers did or that most of Africa already farms organically and it can't do the job, organic farming is a sophisticated combination of old wisdom and modern ecological innovations that help harness the yield-boosting effects of nutrient cycles, beneficial insects, and crop synergies. It's heavily dependent on technology-just not the technology that comes out of a chemical plant.

High-Calorie Farms

So could we make do without the chemical plants? Inspired by a field trip to a nearby organic farm where the farmer reported that he raised an amazing 27 tons of vegetables on six-tenths of a hectare in a relatively short growing season, a team of scientists from the University of Michigan tried to estimate how much food could be raised following a global shift to organic farming. The team combed through the literature for any and all studies comparing crop yields on organic farms with those on nonorganic farms. Based on 293 examples, they came up with a global dataset of yield ratios for the world's major crops for the developed and the developing world. As expected, organic farming yielded less than conventional farming in the developed world for most food categories, while studies from the developing world showed organic farming boosting yields. The team then ran two models. The first was conservative in the sense that it applied the yield ratio for the developed world to the entire planet, i.e., they assumed that every farm regardless of location would get only the lower developed-country yields. The second applied the yield ratio for the developed world to wealthy nations and the yield ratio for the developing world to those countries.

"We were all surprised by what we found," said Catherine Badgley, a Michigan paleoecologist who was one of the lead researchers. The first model yielded 2,641 kilocalories ("calories") per person per day, just under the world's current production of 2,786 calories but significantly higher than the average caloric requirement for a healthy person of between 2,200 and 2,500. The second model yielded 4,381 calories per person per day, 75 percent greater than current availability-and a quantity that could theoretically sustain a much larger human population than is currently supported on the world's farmland. (It also laid to rest another concern about organic agriculture; see sidebar at left.)

The team's interest in this subject was partly inspired by the concern that a large-scale shift to organic farming would require clearing additional wild areas to compensate for lower yields-an obvious worry for scientists like Badgley, who studies present and past biodiversity. The only problem with the argument, she said, is that much of the world's biodiversity exists in close proximity to farmland, and that's not likely to change anytime soon. "If we simply try to maintain biodiversity in islands around the world, we will lose most of it," she said. "It's very important to make areas between those islands friendly to biodiversity. The idea of those areas being pesticide-drenched fields is just going to be a disaster for biodiversity, especially in the tropics. The world would be able to sustain high levels of biodiversity much better if we could change agriculture on a large scale."

Badgley's team went out of the way to make its assumptions as conservative as possible: most of the studies they used looked at the yields of a single crop, even though many organic farms grow more than one crop in a field at the same time, yielding more total food even if the yield of any given crop may be lower. Skeptics may doubt the team's conclusions-as ecologists, they are likely to be sympathetic to organic farming-but a second recent study of the potential of a global shift to organic farming, led by Niels Halberg of the Danish Institute of Agricultural Sciences, came to very similar conclusions, even though the authors were economists, agronomists, and international development experts. ...

  Sidebar one:

Enough Nitrogen To Go Around?

In addition to looking at raw yields, the University of Michigan scientists also examined the common concern that there aren't enough available sources of non-synthetic nitrogen-compost, manure, and plant residues-in the world to support large-scale organic farming. For instance, in his book Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production, Vaclav Smil argues that roughly two-thirds of the world's food harvest depends on the Haber-Bosch process, the technique developed in the early 20th century to synthesize ammonia fertilizer from fossil fuels. (Smil admits that he largely ignored the contribution of nitrogen-fixing crops and assumed that some of them, like soybeans, are net users of nitrogen, although he himself points out that on average half of all the fertilizer applied globally is wasted and not taken up by plants.) Most critics of organic farming as a means to feed the world focus on how much manure-and how much related pastureland and how many head of livestock-would be needed to fertilize the world's organic farms. "The issue of nitrogen is different in different regions," says Don Lotter, an agricultural consultant who has published widely on organic farming and nutrient requirements. "But lots more nitrogen comes in as green manure than animal manure."

Looking at 77 studies from the temperate areas and tropics, the Michigan team found that greater use of nitrogen-fixing crops in the world's major agricultural regions could result in 58 million metric tons more nitrogen than the amount of synthetic nitrogen currently used every year. Research at the Rodale Institute in Pennsylvania showed that red clover used as a winter cover in an oat/wheat-corn-soy rotation, with no additional fertilizer inputs, achieved yields comparable to those in conventional control fields. Even in arid and semi-arid tropical regions like East Africa, where water availability is limited between periods of crop production, drought-resistant green manures such as pigeon peas or groundnuts could be used to fix nitrogen. In Washington state, organic wheat growers have matched their non-organic neighbor's wheat yields using the same field pea rotation for nitrogen. In Kenya, farmers using leguminous tree crops have doubled or tripled corn yields as well as suppressing certain stubborn weeds and generating additional animal fodder.

The Michigan results imply that no additional land area is required to obtain enough biologically available nitrogen, even without including the potential for intercropping (several crops grown in the same field at the same time), rotation of livestock with annual crops, and inoculation of soil with Azobacter, Azospirillum, and other free-living nitrogen-fixing bacteria. ...

Comment Re:Yes, Haber's life is an example of that irony (Score 1) 224

"And where does nitrogen in food come from?"

It's in part a cycle -- land to humans to waste to land. Only in part as nitrogen can oxidize to go back to the air, so it needs to get fixed again by bacteria.

"Very little fertilizer is lost in modern agriculture in relative terms."

First, 40% of food in the USA is wasted. So, all that fertilizer is wasted. Food produced closer to home might not incur so much waste.
http://www.washingtonpost.com/...

But that is not what I meant. This is what I meant:
http://www.scientificamerican....
"Fertilizer Runoff Overwhelms Streams and Rivers--Creating Vast "Dead Zones"
The nation's waterways are brimming with excess nitrogen from fertilizer--and plans to boost biofuel production threaten to aggravate an already serious situation"

"Pathogens are not a problem, they are outcompeted by soil bacteria during composting."

Composting doesn't always get everything, as compost piles have edges and heat zones, and all that depends on careful management. Also, compost is contaminated by chemicals people dispose in the waste stream (chemicals from home darkrooms used to be a big issue) and also pharmaceuticals flushed down toilets.

"China's population grew 3 _times_ during the last century virtually without increasing the land use, because of the fertilizers and pesticides."

The fact that China's population may now need more inputs given growth in the last century since the Haber process does nothing to invalidate that they managed large (but not quite so large) populations for 3900 years before that without the Haber process. What that shows is that alternatives have worked. China is one of the most densely populated places on the planet. If they could do it, it shows the US could do it and other countries could do it.

"Still won't work. You'll need livestock for manure (to concentrate nitrogen and other nutrients). "

I agree that much current "organic agriculture" is dependent on livestock manure from conventional farming which is based mostly on feeding conventionally farmed grain (not pasture grass) to animals, and so there is a big nitrogen input there. That said, given a change in land uses patterns (especially away from agriculture), and with more nutrient recycling, and with intercropping and crop rotations and ground up rock dust, likely we could feed the planet well without the Haber process. I'll admit it would be good to back that with more numbers.

"And agricultural robots are a pipe dream."

Did you do the slightest research on them?
"Are agricultural robots ready? 27 companies profiled"
http://robohub.org/are-agricul...

"Unlike you, I actually helped to grow my own food (lean years after the USSR collapse) so I appreciate the amount labor required for that."

I'm sorry you had to go through that involuntarily due to crazy geopolitics and economics that cause that crisis. Still, you can't compare what you presumably had to do with limited tools and limited materials and limited information in a (probably) limited climate on impoverished soils with what is really possible with good tools, abundant materials, abundant information, in a good climate on well prepared soils.

Still, how do you know what foods I've grown or what I've studied?

"And I also worked with the Great Evil (Monsanto) on actual modern agriculture to appreciate the difference."

I see. I'll try not to assume that context might explain a lot. :-) Still, at the very least, it may be something like how someone who works with Microsoft products a lot might never think that open source software is possible or even better sometimes? Have you studied organic agriculture? Have you read Widdowson's book?
http://www.globalresearch.ca/t...

Comment Re:Thank you for reminding us. (Score 1) 108

Nah, that part I can understand: funerals are for the living, who have undeniably suffered a loss. You might weep when a good friend moves far away, and you can still visit and talk to them on the phone. Death is considerably less malleable - even if you decide to follow, doing so means giving up contact with all your living loved ones until their time comes.

And incidentally I've actually been to a few funeral parties - no strippers or blow, but lots of drinking and carrying on, with plenty of laughter to ease the tears. I'd certainly hope my own would be so pleasant. That I will die is the only guarantee I got in life - don't mourn that I met the inevitable, rejoice that I lived well while I was here.

Comment Re:Yes, Haber's life is an example of that irony (Score 1) 224

Respectfully, I suggest you research these issues further to avoid spreading confusion on them.

For example, while humans don't fix nitrogen, human waste contains a lot of nitrogen from food that is eaten. For example, by one calculation
http://www.agriculturesnetwork...
"Roughly estimated, at least 800 million kg nitrogen, 400 million kg phosphate and 500 million kg potash can be annually acquired from night soil produced in urban areas. This is equivalent to some 4 million tonnes of commercial fertiliser, which is about 4% of all commercial fertiliser used throughout the country."

Considering how much fertilizer is wasted in modern systems, you can see that this was a big deal in China as part of a closed cycle including other techniques to restore soil fertility. Granted there are other issues with pathogens and contamination from "night soil", but nonetheless, China is an example of doing wihout the Haber process for 4000 years and still supporting big populations by other means.

Historically, rotational field cropping has also been used to replenish the soil. Also, intercropping can boost nitrogen levels in intensive agriculture;
"Intercropping with nitrogen-fixing crops leads to increased maize yields, says study"
http://www.enn.com/agriculture...
"Results show that while mono cropping practices produce a high yield crop, it is not the sustainable solution in the long run. Instead, the research suggests that by strategically combining small doses of inorganic fertilizer through an intercropping system, maize yields will be more stable and will not only increase, but will lead to other ecosystem services like soil stability, water storage capacity and overall fertility. "

Integrated agricultural systems such as involving water from fish ponds and such can also increase nitrogen in agriculture..

I've cited sources for my points, including how excessive nitrogen fertilizer causes micronutrient loss. While nitrogen is often a limiting nutrient, the point is that it can displace other nutrients very easily, causing other issues. Beyond clay, organic matter also holds onto micronutrients. This is one reason "organic" farming focuses on building up the organic matter content of soils to increase nutrient holding capacity. "Feed the soil and keep it healthy for healthy plants" is the motto there. By contrast, conventional agriculture essentially uses the soil to prop up plants, and tends to produce lush green growth with excessive nitrogen, but the plants are otherwise weak and unhealthy and susceptible to disease. There are other broader problems from excess nitrogen too:
http://www.vision.org/visionme...

Please cite sources etc. substantiating your various points especially disagreeing with the loss of micronutrients (which is basic chemistry, if usually ignored in mainstream agriculture which tends to maximize empty calories) in order for this to be a more productive dialog.

Here's the bottom line on at least US agriculture. Almost everything grown just goes to feed animals, and eating too many animal products is bad for people's health, as is eating too many refined grains (another big part of the rest of US agriculture). So really, all this discussion about fertilizer in that sense is besides the point in many ways. See:
http://www.westernwatersheds.o...
"Cropland- About 349 million acres in the U.S. are planted for crops. This is the equivalent of about four states the size of Montana. Four crops -- feeder corn (80 million acres), soybeans (75 million acres), alfalfa hay (61 million acres) and wheat (62 million acres) -- make up 80 percent of total crop acreage. All but wheat are primarily used to feed livestock. The amount of land used to produce all vegetables in the U.S. is less than 3 million acres."

So, one percent is used to grow vegetables, and all the best nutritional advice has us eating a lot more vegetables (see for example Dr. Joel Fuhrman's writings).

If we wanted to do rotational cropping and intercropping to just feed humans, it seems to me it is likely quite feasible, especially with agricultural robots to manage that complexity instead of a lot of manual labor. A great book on how to grow all your own food on a small amount of land (emphasizing a lot of beans):
http://www.amazon.com/Survival...

Comment Re:Hopefully will be FLOSS, Oculus compatible (Score 1) 48

I don't see that there's much to abstract, at least not in the helmet itself.

Head tracking provides a six-axis position relative to some reference position.
Render post-processing that complements optics to provide a artificially wide FOV.

There's lots of other tricks you can play to improve performance, but I get the impression they're mostly at the engine level, and thus unlikely to be particularly relevant to API-level compatibility

Comment Re:Self-mummified? (Score 1) 108

Read TFA - it's a 2000-day diet designed to severely emaciate the body, followed by drinking varnish tea to purge remaining fluids and possibly render the body poisonous, followed by live entombment in a space too small to move in, and meditation until death. 1000 days after death the tomb is then opened to see if the body was mummified or not - presumably some time after that the scrolls were inserted - they're not normally part of the process. Depending on construction the statue may have been the tomb, or it may have been constructed around his body at some later date - in fact I wouldn't be surprised if both the scrolls and the statue were added to the mummy at the same time.

Comment Re:self-mummified (Score 1) 108

It's probably a safe bet that, generally speaking, the sorts of monks who lock themselves in isolation for months or years at a time don't consider "communicating with the world" to be very high on their priority list. Enlightenment is after all a very personal thing, not something you can really discuss directly even with fellow attainees.

Comment Re:Hopefully will be FLOSS, Oculus compatible (Score 1) 48

I suspect that the various VR implementations will be relatively compatible at the API level - really there's only two core components:
The first, 6-axis head tracking, should be trivial to maintain compatibility so long as nobody tries to lock down the technology with DRM, like TackIR attempted to do with their non-VR head tracking.

The second, renderer-based collaboration with the optics, could potentially be more problematic. But so long as the optics are similar and/or it's simply a post-processing distortion filter applied to what is basically a pair of traditional rendering frustums, maintaining compatibility should be a relatively simple endeavor. Again assuming the producers *want* to maintain compatibility.

So I guess it all comes down to willingness to be compatible, and frankly what we've seen so far seems promising: There seem to really be only three major contenders (not counting AR, which is a completely different technology that only shares much of the hardware):

Oculus/Facebook - where Oculus has repeatedly voiced their hope and commitment to avoiding artificial market segmentation, and have collaborated heavily with both Valve and Sony in the past. Belonging to Facebook may change things, but I really don't see Facebook wanting to get heavy into the hardware side: they're a software/advertising platform company - I can see why they would really want decent VR to catch on, but I doubt they have much interest in being a hardware company themselves, the profit margins are unlikely to be appealing.

Valve: Again, they're primarily a software delivery platform, plus game engines, and oh yeah, a couple games too. They have shown very little interest in producing hardware, even their SteamBox initiative has focused on partnering with hardware vendors while they provide an alternative OS to Windows, which has been neglected by MS on the gaming front, and faces the risk of a "Microsoft Store" eating Steam's lunch, especially if they decide to pull an iOS and lock out competing storefronts.

Sony: Well, okay, they're Sony. I could totally see them doing everything they can to try to lock down their own proprietary VR solution, especially since they already have a potentially viable first-gen motion-control system worked out with the PS Move. They're also a console company with a long history of selling hardware at a loss and making their profit on licensing software compatibility, which could give them a distinct price advantage over more open competition. I suppose the question there will be whether they see more profit potential in going their own way, or in attracting PC VR enthusiasts who don't want to have to buy a second VR helmet for their PS5. Personally, if they're going up against two popular open platforms, I suspect they'll see more profit potential in compatibility.

Comment Re:InGaAs? (Score 2) 279

Well, silicon is reaching its limits - much like with aircraft maneuverability, stability tends to come at a price: modern highly maneuverable fighter planes are so unstable that a human pilot couldn't hope to keep them in the air without constant computer assistance. Modern CPU manufacturing, self-monitoring, and thermal self-regulation are all far more advanced than when GaAS "failed" - I'd say its got a fair chance at a comeback, though doped diamond may prove more viable once synthetic diamond yields grow to sufficient scale. Barring revolutionary production techniques though, I think that's still at least a decade or two in the future.

Comment Re:amazing (Score 1) 279

Got something on your mind there? Silicone is far more commonly used in caulks, oils, resins, and "rubber" oven/freezer dishes than in implants. And I would go so far as to say that silicone is by far the most common use of silicon in the world, not counting sand and glass, which most people don't realize are silicon-based.

But I would certainly like to get my hands on the fellow that decided this crazy new siloxane-based rubber should be named almost the same thing as the crystaline mineral from which it was produced. Talk about an invitation to confusion.

Slashdot Top Deals

So you think that money is the root of all evil. Have you ever asked what is the root of money? -- Ayn Rand

Working...