Want to read Slashdot from your mobile device? Point it at m.slashdot.org and keep reading!

 



Forgot your password?
typodupeerror
×

Comment Re:The responsible consumer is a myth (Score 1) 1146

Let's face it: people don't want to think about every bit they do.

You're right. People are plain stupid! Why do we even give them the right to vote? Surely, if people are too dumb to switch of the lights or TV or heating when they don't need it, how can they be given the responsibility of choosing their own government?

Hope you start to see a problem when dismissing people from their responsibility to judge for themselves because they are 'too stupid'.

Comment Re:Regulations a bit premature (Score 1) 1146

the price of leds is made up by the extreme long life they have.

That's what they said with the first generation power-saving lamps as well. Supposed to last 25 years, but that turned out to be about a year. Yes, I had to replace these lamps yearly. A lightbulb costed 90 eurocents, these power-saving lamps were at least 5 euro a piece. As for the environment - worse than lightbulbs because the power saving lamps have electronics in them which take much more water and energy to manufacture and generate more and much nastier waste than an ordinary light bulb.

Now we're supposed to believe that leds are the answer. Sure, leds last long but what about the circuits that drive it? People have dimmers in their houses which may not play nice with the electronics on the lamp, breaking it in no-time.

And as for efficiency - the heat a bulb generates is not wasted at all in houses with the heating turned on.

And... I just can't believe banning the bulb is even possible without any protests in the USA, "land of the free". The only ones who benefits are the producers of lamps, Philips, Siemens, etc. You can bet that they did some lobbying here and there for these regulations to pass. The losers are you (less choice, higher cost), the environment (because I'm pretty sure these lamps will break plenty quick too) but worse, choice and even liberty in general.

Because this won't stop here, obviously. In the name of the environment, what's next?

Comment Re:genesis of life (Score 1) 74

Mars had an atmosphere
Yes, and it was totally gone within 500 million years after Mars was formed, and had likely become prohibitively thin for any life to form way before it was gone. Any life that existed must have evolved during the first couple of hundred million years. But on earth, it took 1 billion years. And earth is bigger, closer to the sun, has more water, a less toxic surface than Mars.

Comment Re:genesis of life (Score 0) 74

I'm sorry, but this is just common sense. Life does not spontaneously appear if you stir in a bowl of water. The chances of a self-copying molecule (because that's all the first "life" can have been) to spontaneously appear is so small, that it took a billion years on earth to happen. Mars, being an environment orders of magnitude less favorable, there's just zero chance.

Comment genesis of life (Score 1, Insightful) 74

On earth, it took 1 billion years before life started to appear. Just let that amount of time sink in for a second. A billion years. During this astoundingly long period, the conditions for life to appear have been orders of magnitudes better than on Mars. Lower radiation due to an atmosphere, warmer but not too warm, less toxic chemicals on the surface, and covered mostly with oceans.

Now although there might have existed water on Mars, and even oceans, the reality is that the chance that life had been able to start on Mars before it dried up and turned into a reddish rock is zero.

Comment Re:Not really sure what I was expecting (Score 1) 56

What a great comment. Perhaps it is too ambitious to shoot for "flying cars" as in cars like today that can also fly. Perhaps it is better to aim for "roadable airplanes" like the design in TFA.

That makes a lot of sense. A roadable airplane only needs short runways and can perhaps be designed to take off and land at a speed of less than 160 km/h (100 mph), making it much more flexible than a conventional airplane. Once in the air, it should behave like a proper plane, that is as easy and as safe to navigate as a car. In the age of self-driving cars, the technology is there to make that possible. I imagine virtual roads in the air that only exist as GPS coordinates in the board computers of roadable airplanes, to minimize any chances on collissions. Also, the planes should be in constant contact with each other in order to stay out of each others way and to be able to land and take off safely.

To do: extra infrastructure in the form of extra short runways, and technology that makes navigating them as easy as driving a car and which allows for many of these planes to be in the air at once without any dangers.

Comment Apple? (Score 2, Interesting) 219

Former Apple fanboy here.

Off-topic rant first: It seems that user experience is no longer top priority at Apple. Why on earth did they screw the user experience for iPhone 4 and older models? The redesign of iOS 7, what a mess. It is inconsistent, mostly pointless, buggy, but worst of all it slows my phone down so much that scrolling has become jerky in any app. I remember playing with an Android Samsung phone a couple of years ago, and dismissed it mainly because of the sluggish user interface. Now my iPhone is like that. Good heavens.

On-topic: Apple is no longer trend-setting but trend-following. Will they also come with bigger screens? Bigger displays? Better cameras? Sensors that actually work for gaming? You know, the stuff that other phones already have? Who knows, follow the trend, Apple...

But personally I think a curved phone is a bit of a gimmick and Apple will not follow it.

I really hope they get their shit together and start making inspiring phones that have the best software, hardware, design and most importantly the best user-experience of any other phone. You know, like in the old days. But I'm not holding my breath. Sigh.

Comment Re:space & time as emergent properties (Score 1) 600

The Aharon-Bohm effect seems to share the property of gravity that it can seemingly exert a force without exchanging a force carrying particle. Since it does not exchange a force carrying particle, it is not collapsing the waveform of the particle it interacts with. When an electron leaves the emitter, the A-B effect is capable of influencing the location where it will hit the screen and gets detected, analoguous to gravity. From an observers point of view, it seems the path the electron took has changed. But, as the axioms demonstrate, it is impossible to prove that the electron was actually present anywhere in between the emitter and detector. The A-B effect seems to be in line with this; the electron does not have any presence or follow some path, but instead follows some set of unknown rules which establish the location of its next interaction.

Comment Re:space & time as emergent properties (Score 1) 600

It's unclear what you mean by "interaction."

Any exchange of energy.

imagine taking a positively charged probe and flying an electron past it. The electromagnetic interaction between electron and probe will be present the entire time the electron is flying past it (and according to Coulomb's law, it's always present, just screened sometimes). So the interaction is demonstrably not instantaneous in this case

I would think the interaction between the electron and the field would be photon-per-photon instead of smooth and continuous. By instantaneous interaction I mean that an interaction itself takes an infinite small amount of time. More explicitly, once they meet, no time passes between the start and the end of the transfer of energy between the photon and the electron.

Physical properties of particles are invariant with regards to effects of time dilation or other relativistic effects. The muons do not need some internal clock to know when to decay. The chance of it decaying is constant per unit of time but of course only when measured in its own reference frame. If the muon moves at relativistic speeds, it will seem as if it takes longer to decay for a stationary observer, but from the viewpoint of the muon, the chance of decaying per unit of time has not changed. I would think this is pretty basic physics but perhaps I am missing something?

I'll keep an eye on the thread in case you reply.

Comment Re:space & time as emergent properties (Score 1) 600

But over an average of many observations, the path of a particle is seen to be able to be obstructed and prevent the interaction from occuring where it would have had there not been an obstruction, i.e. shadows cast by objects blocking light sources.

In between two interactions, the particle does not interact*, once it interacts it is with the closest particle that happens to be in its path. The real question is: what happens during the time that we experience to pass as an observer in between two interactions. Is that electron really present in the space during the time when it travels from point A to point B? There is no way to tell, since verifying whether the electron is present requires an interaction with the electron.

Also, radiation is proven to take time to traverse space, i.e. when communicating with a satellite.

Time is observed to pass between the interactions with the earth and satellite antennas. However, a photon travelling between the antennas has not experienced any passing of time as photons travel with the speed of light. The question is: have the photons travelled in the space between the antennas, or did the photons jump from one antenna to the other, somehow "knowing" that there is no obstacle in their path? If this seems strange, then realize that in the double slit experiment, something similar happens: a photon somehow "sees" whether there is one or there are two slits, and continues its path like a wave (two slits) or a particle (one slit) after passing the slits. It can not be explained how a single photon can "know" the presence of the two slits, which can be multiple wavelengths apart from each other.

Gravity does interact with particles at any point in their path. Photons are bend around stars, for instance. However, gravity does not collapse the waveform, and this being the case, interactions of a particle with gravity can not be used to glean for instance path information of a photon in a double slit experiment. The interaction between particle and gravity therefore must be fundamentally different from interaction between two elementary particles. I can therefore make the prediction that gravity is not the result of particle or field interaction, but actually the result of a different, not yet understood phenomena. Also, I herewith predict that the Higgs boson is not responsible for giving mass to particles.

*Except for interactions with virtual particles, but since these interactions are impossible to observe without another interaction, the interpretation of space and time being emergent holds.

Comment Re:space & time as emergent properties (Score 1) 600

Thanks for the very interesting comments.

@1 (decay of elementary particles): I note that it can not be predicted for a single elementary particle when it will decay. The amount of time that the particle has existed does not help to more accurately the moment it will decay, i.e., it is martingale with respect to the amount of time passed. Just with heads or tails: five times heads in a row makes no predictions of what side comes up next. Therefore, I believe that experiencing passage of time by an elementary particle is not required for it to be able to decay. At any moment in time, the chance of it decaying is equal.

@2 (philosophical remark): The axioms make indeed the same predictions about the universe we see. You can therefore also see the axioms as a means of showing that an interesting alternate interpretation of space and time exists, one where these concepts are emergent instead of fundamental. What it does predict, however, is that a deeper fundamental reality must exist, and that we have been looking at space and time in the wrong way all along, just as the article suggests.

Comment space & time as emergent properties (Score 5, Interesting) 600

One of the things the article says is that space and time may not be fundamental properties of nature, but properties that emerge (i.e., are the result of) a more fundamental reality.

Warning: IANAP. But with some axioms, it is possible to reach the same conclusion.

Imagine a simple experiment with an electron source and a detector. An electron is emitted in the direction of a detector. The experiment is set up such that while travelling towards the detector, the electron does not interact. More precisely, in between the emitter and the detector, the electron does not exchange any energy. Then, the electron hits the detector and becomes detected (interaction two).

Has the electron physically travelled in the space between the electron source and the detector? May it be assumed that in between the interaction with the emitter and its subsequent interaction with the detector the electron is physically present?

Obviously, it is impossible to establish that the electron is present between the emitter and the detector without actually interacting with the electron. It is therefore herewith observed that any assumptions about physical presence of the electron in between the source and the detector can not be experimentally verified. More generally, it is observed that the assumption of physical presence of any elementary particle in between two interactions can not be falsified.

Equally impossible to falsify is the assumption that in between the emitter and the detector, the electron in the experiment was not physically present. This assumption implies that (in the reference frame of the observer) the electron disappeared at the emitter and reappeared at the detector, and did not take up any physical space at any time in between. In between interactions, the representation of the electron disappeared and became unobservable. For as far as an observer can tell, the electron disappeared from the universe completely in between interactions.

Since obviously, properties about the electron are preserved in between interactions, the electron must still somehow being represented – i.e., the representation of the electron has clearly not disappeared from the universe.

The notion “observable universe” is therefore being introduced to make the distinction between interactions which can be observed, and the herewith theorized part of the universe that is apparently capable of at least holding a representation of an elementary particle and which can not be observed.

Observable universe: The part of the universe in which an interaction manifests itself.

Let us formulate the following two axioms:

Axiom 1: An interaction is instantaneous, i.e., it lasts for an infinitely small amount of time.
Axiom 2: An elementary particle only exists in the observable universe at the moment of its interaction.

Notice that axiom 1 and 2 are unfalsifiable. Consider the reverse of axiom 2:

Reverse of Axiom 2: An elementary particle physically exists in the observable universe in the time that passes (in the reference frame of an observer) between two interactions.

This axiom is equally unfalsifiable, since physical presence of an elementary particle can only be proven by interacting with it. The reverse of axiom 1, which would postulate that an interaction lasts a non-zero amount of time, is equally unfalsifiable.

Elementary particles have no internal structure and are considered point particles. In other words, an elementary particle does not take up any physical space. If we assume that everything in the observable universe consists of elementary particles, then it follows that all particles that exist in the universe do not take up any space. The aggregate volume of all elementary particles is zero.

Combined, axioms 1 and 2 state that in between two interactions, an elementary particle is not present in the observable universe. A particle only manifests itself the instant moment it interacts, becoming part of the observable universe for an infinitely small amount of time, in an infinitely small amount of space.
Two more unfalsifiable axioms are now introduced:

Axiom 3: From the reference frame of an elementary particle, no time passes during an interaction.
Axiom 4: From the reference frame of an elementary particle, no time passes in between two subsequent interactions.

Combined, axioms 3 and 4 state that elementary particles do not experience any passing of time. Notice that again, axioms 3 and 4, as well as their reverses, are unfalsifiable.

For every elementary particle, these axioms say that a particle only exists in the observable universe for an infinite small amount of time and only when it interacts. It follows then, that the observable universe is a succession of momentary interactions that themselves do not take up any space or time.

From here, it can be concluded that it is not possible to disprove that space and time do not exist. From the axioms, each of them impossible to disprove, it follows that space and time are emergent properties of a more fundamental reality.

But, again, IANAP, perhaps it shows, but I just like to think about these things and would welcome any feedback, even if it demonstrates the above is complete nonsense.

Slashdot Top Deals

Remember, UNIX spelled backwards is XINU. -- Mt.

Working...