Slashdot is powered by your submissions, so send in your scoop

 



Forgot your password?
typodupeerror
×

Comment Re:Terraforming on the same trip (Score 1) 68

Metabolized with what oxidizer?

It's just the opposite - methane on Titan is like nitrogen on Earth; it's things like acetylene and free hydrogen that are the potential energy sources, and to a lesser extent the more common (but less reactive) higher mass alkanes, etc.

The main problem is that LAWKI isn't even remotely compatible with existing in the cryogenic environment of Titan. There are a lot of interesting alternative chemistries, but they require basically redesigning life from scratch. We're simply not up to this task with our current technology.

Comment Re:Titan or Bust! (Score 1) 68

It's funny how we so strongly disagree further down in the comments, but I 100% agree with you here.

0,38g being largely fine for health is... I mean, if I had to bet, I'd put my money on it probably being true, but it's anything but guaranteed. There was a private project to test this, the Mars Gravity Biosatellite, but it ran out of funding; I'm not aware of any similar experiments that have been conducted. There've been a variety of attempts to simulate various gravity on Earth, such as having people lie on tilted beds or hanging them from cranes at an angle or whatnot, but they all have obvious weaknesses.

There's not just the question of adults who visit from Earth, but also children who grow up on 0,38g, and what impact that would have to their physiology.

Comment Re:Titan or Bust! (Score 1) 68

NASA is getting there

It most definitely is not. Are you being deliberately obtuse?

one can do for more than a few minutes before shit implodes and burns

You clearly didn't read anything I wrote, so why should I even bother responding? (A) Literally nobody was talking about settling the surface, and (B) It's been repeatedly pointed out that basically indefinite lifespans can be achieved for surface vehicles, as backed up by peer-reviewed research from NASA. And "christoban on Slashdot disagrees with peer-reviewed research from NASA" isn't exactly a compelling argument.

B) building floating cities, which would probably take another century of engineering and investment before we could do so reliably.

We were flying balloons on Venus almost 40 years before we flew a helicopter on Mars. We directly sampled Venus's atmosphere 4 years before we sampled Mars. We successfully landed and transmitted data either 1 or 6 years (depending on your definition) from the surface of Venus vs. Mars.

Your incredulity about levels of difficulty doesn't translate to actual levels of difficulty.

Comment Re: All sounds great but⦠(Score 1) 50

Nope, I have yet to ever run Wayland. I'm still on good old X. It happened with my 970, it happened with my 1070, and it happened with my 4060. And then I went to XFCE4 with Compiz (with the emerald decorator.) I still have KDE installed and occasionally use some kwhatever app.

Anyway I had this problem with several games, across wine, proton, and proton-ge. Mostly with games that were bitchy about alt-tab. I tried it with and without focus protection, too. But ultimately it just boiled down to being KDE, and I finally found mention of it someplace and then I gave up and switched.

Comment Re: It's called work (Score 1) 217

You "protest" on your own time. If you don't like the actions of your employer you can raise those concerns internally, or quit. Your boss has NO obligation to accommodate your desire to protest at your place of work, and other workers who don't want to participate shouldn't have to put up with it either.

You have a right to protest. They have a right to fire you for it, and have you removed from the premises. In my opinion, you should also not be able to win a retaliation suit in such a case. You and your employer both have rights.

If you don't want employees to protest your behavior, amass a bunch of followers. No doubt you can come up with some way to achieve that through hiring and layoff practices. Just don't be surprised if their work is low-rate.

Comment Re:Titan or Bust! (Score 1) 68

I think your confusion stems from analogy to baking clay or ceramics. But what's happening there is sintering. You have extremely fine grains, and you're leading certain crystals to soften and merge as a "glue" between grains, so that the grains stay together.

While sintering is important in the formation of some types of sedimentary rock, this has nothing whatsoever to do with igneous rock. It's already as "together" as it's ever going to be when it a lava flow solidifies. The only thing its grains can ever become is "less together".

And even ignoring that, by definition, you're not going to be sintering something that formed at Venus temperatures, by exposing them to Venus temperatures. The process of sintering requires a radical change in conditions.

Comment Re:Titan or Bust! (Score 1) 68

We are not capable of building anything that can withstand the surface pressures and temperatures for very long

The Venera probes have likely still not experienced any sort of crushing. You seem to be confused about how pressure works. If you don't exert stress pass the yield point of a material, the length of time until something crushes is "infinite". Which is why, say, almost all rocks buried in Earth's crust are able to remain intact over millions to billions of years.

You build of a thickness that the yield point at the design temperature is well above the amount of pressure-induced stress. The Venera probes' pressure vessels - uninsulated - hit surface temperature quite quickly (indeed, mostly during the descent itself). This did not make them crush, because their engineers were not morons who didn't do the math first when determining the probes' required specs.

All probes are designed to their environment. There is nothing magical about the nominal 92 MPa / 464 C of Venus's mean surface (note: this is for the mean surface; the highlands are significantly lower pressure and significantly cooler) that makes it impossible while, say, designing a lander to operate in the cryogenic conditions of Titan or whatnot is easy. This is 1960s tech. Steel alloys usually melt at up to 1400 C or so. Titanium at 1670 C. Tungsten at 3422 C. Some ceramics don't decompose until nearly 4000C. And pressure increases melting points. Now, it's not just the melting point that matters - higher temperatures mean lower yield strengths, so you have to design with the high temperature yield strengths in mind, not room temperature ones. But the simple fact is that various alloys and compounds can operate fine at WAY above Venus surface temperatures. It's not even close. The pressure vessel needed for the Venera probes was just a thin skin.

And to repeat: if the stress doesn't don't go above the yield point, the time to crushing is infinite. Same as any other pressure vessel, from aerosol cans to propane tanks to spacecraft in space (-1 atm).

And I'll repeat: with the same trivially-simple 1960s-tech method as the Venera probes, you can get surface residence times of a couple hours. With heat pumps, indefinitely. And "Baron_Yam at Slashdot" isn't going to override the actual NASA researchers who have worked on this topic.

The rock of Venus is dry-baked to incredible strength

The fact that you think that rock can be "baked to incredible strength" is itself a boggling concept. Not even accounting for the fact that we can literally see sand and gravel in the Venera images, and the Venera probes literally took surface samples. We can see dunes from orbit on radar. Just the very concept that you think that if you heat rock to a couple hundred celsius that makes it super hard, when the rock formed from vastly-hotter lava. Heat makes rock softer, not harder. And subliming away compounds or chemically eroding rocks makes them weaker, not stronger.

From a bulk composition perspective, Venus's surface is mostly just basalt - though there's some probable rhyolitic flows in places, possibly some unusual flows rare or nonexistent on Earth, and there's speculation that some of the highlands may contain residual granitic continental crust. The specific details of said rocks can be quite interesting, but from a bulk perspective, it's like oceanic crust. We know this because we've literally sampled it..

Comment Re:Titan or Bust! (Score 1) 68

That's a lot of text to not mention the need to build floating cities and not die on the surface, which even NASA has not been able to do for more than a few minutes

In case you didn't notice, NASA also hasn't built cities on Mars either, despite spending two orders of magnitude more money on it in recent decades than Venus.

Anyway, we don't need the most Earthlike atmosphere, we need to survive in an environment where we actually know how to do that.

Which requires creating Earthlike conditions. Starting with reasonably Earthlike conditions certainly is a good start.

Slashdot Top Deals

"God is a comedian playing to an audience too afraid to laugh." - Voltaire

Working...